Homework Set # 7 – Due July 23, 2004 @ 5:00 PM

1) A dynamical system has input u, output y and transfer function

$$G(s) = \frac{Y(s)}{U(s)} = \frac{2s + 10}{5s^3 + 3s^2 + s + 4}.$$

For the control canonical form of the state equations

$$\dot{X} = AX + Bu, \quad Y = CX,$$

Determine the matrix A, and the vectors B and C.

2) Consider the state space models with the following A, B matrices

$$(1) \quad A = \begin{bmatrix} -3 & 1 & 1 & 2 \\ -2 & 3 & 1 & 2 \\ 2 & 1 & 4 & 1 \\ -4 & -3 & -1 & 0 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix},$$

$$(2) \quad A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}. $$

Compute the relative controllability index of each mode in these two systems. Are these two systems stabilizable? Justify your answers.

3) Consider the state space models with the following A, B, C matrices

$$(1) \quad A = \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & -1 \end{bmatrix};$$

$$(2) \quad A = \begin{bmatrix} -3 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -5 \end{bmatrix}; \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}. $$

Compute the relative observability index of each mode in these two systems. Are these two systems detectable? Justify your answers.

4) A linear continuous-time system is described in state space form using the following matrices

$$A = \begin{bmatrix} -2 & \epsilon \\ 4 & -5 \end{bmatrix}; \quad B = \begin{bmatrix} 0 \\ 3 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & -1 \end{bmatrix}; \quad D = 0$$

(a) Show that the system is controllable if and only if $\epsilon \neq 0$.
(b) Compute the transfer function, \(G(s) \), from \(U(s) \) to \(Y(s) \), and show that there is a pole-zero cancellation if \(\varepsilon = 0 \) (sufficiency). Is this a necessary condition? Justify your answer.

5) A continuous-time system has a state space model given by the following matrices
\[
A = \begin{bmatrix}
-2 & 3 & 0 \\
1 & 0 & 0 \\
0 & 0 & 4
\end{bmatrix} ; \quad B = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \\
C = \begin{bmatrix}
1 & -1 & 1
\end{bmatrix} ; \quad D = 0
\]

(a) Determine whether or not the system is stable.

(b) Investigate the system “-ability” properties (i.e., controllability, stabilizability, observability, and detectability).

6) For a system with the following state equations and zero initial condition,
\[
\dot{X} = \begin{bmatrix}
-5 & 1 \\
-3 & -1
\end{bmatrix} X + \begin{bmatrix}
0 \\
1
\end{bmatrix} u \\
Y = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} X
\]

find the steady-state value of \(y(t) \) for a step input \(u(t) \).